Comparative Study on Rosseland’s Heat Flux on Three-Dimensional MHD Stagnation-Point Multiple Slip Flow of Ternary Hybrid Nanofluid over a Stretchable Rotating Disk

نویسندگان

چکیده

This article investigates the three-dimensional magneto stagnation-point flow of ternary hybrid nanofluid caused by a radially extended infinite gyrating disk with multiple slip effects. The main concern is to analyze characteristics heat transport when linear thermal radiation (LTR), quadratic (QTR), and full nonlinear (FNTR) are significant. Ternary fluid composition water, spherical-shaped silver, cylindrical-shaped aluminum oxide, platelet-shaped nanoparticles. Non-uniform source effects taken into account. governing equations constructed using single-phase model boundary layer theory von Karman variables. consequent problem solved an efficient finite element method results verified available data. Nusselt number friction factors computed for both clean subjected three different forms Rosseland’s radiation. Our demonstrate that rate (Nusselt number) higher in FNTR case than QTR LTR, it even compared fluid. Further, gets reduced parameter. rotation escalates shear stress along radial axial directions. conditions lead condensed layers over surface.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Radiation Effects on MHD Stagnation-Point Flow in a Nanofluid

In this study, the two-dimensional Magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid in the presence of thermal radiation is investigated. Using a similarity transform, the NavierStokes equations are reduced to a set of nonlinear ordinary differential equations. The similarity equations are solved numerically for three types of nanoparticles, namely copper (Cu), a...

متن کامل

Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg me...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface

This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10183342